

Name: _____

Date: _____

Pre Calculus 11 HW: Lesson 6 Completing the Square

1. What is a perfect trinomial? Explain using your own words? How do you tell if a trinomial is a perfect trinomial?

2. Which of the following are perfect trinomials? Indicate YES or NO !(If not, explain why If yes, factor it.

a) $y = x^2 + 12x + 36$	b) $y = x^2 + 10x - 25$	c) $y = x^2 - 14x + 49$
d) $y = x^2 - 20x - 100$	e) $y = x^2 + 22x + 121$	f) $y = x^2 - 40x + 400$
g) $y = 4x^2 - 4x + 1$	h) $y = 4x^2 - 9$	i) $y = 25x^2 - 20x + 4$

3. What does it mean to complete the square? Explain:

4. Indicate what value should be added to the trinomial so that the equation could be a perfect trinomial:

a) $x^2 + (?) + 9$	b) $x^2 + 8x + (?)$
c) $(?) - 2x + 1$	d) $x^2 - (?) + 81$
e) $x^2 - 15x + (?)$	f) $x^2 + 17x + (?)$
g) $4x^2 + 4x + (?)$	h) $9x^2 - (?) + 1$

5. What are the first two steps in the process of completing the square?

6. What is $12 \div \left(-\frac{1}{2}\right)$? What happens when you divide a value by a fraction?

7. Convert each equation in to vertex form: $y = a(x - p)^2 + q$ by completing the square. Show all your steps:

a) $y = x^2 + 4x - 20$

Equation:

b) $y = x^2 - 8x - 20$

Equation:

c) $y = -x^2 - 14x - 15$

Equation:

d) $y = 4x^2 + 20x - 12$

Equation:

e) $y = 2x(x-5)$

Equation:

g) $y = -2x^2 - 15x + 100$

Equation:

e) $y = -\frac{1}{2}x^2 + 14x + 100$

Equation:

f) $y = 3x^2 + 6x + 10$

Equation:

h) $y = -3x^2 + 18x + 50$

Equation:

f) $y = \frac{1}{2}x^2 + 8x - 30$

Equation:

8. Solve each of the following equations algebraically:

a) $(x-3)^2 - 12 = 0$	b) $(2x+4)^2 - 16 = 0$	c) $-4(x+7)^2 + 14 = 0$
d) $0.5(x+11)^2 - 11 = 0$	e) $(x+5)^2 + 12 = 0$	f) $\frac{(2x+1)^2}{3} - 15 = 0$
g) $-\frac{2}{3}\left(x - \frac{3}{2}\right)^2 + 4 = 0$	h) $-\frac{7}{3}(2x-13)^2 + 15 = 0$	i) $\frac{17}{3}(2x-21)^2 = 0$

9.

10. Given a quadratic function in the form of $y = a(x-p)^2 + q$:

a. If $a > 0$ and $q > 0$, then the function will not have any roots: TRUE or FALSE (Explain)

b. If $a < 0$ and $q > 0$, then the function will have only one root: TRUE or FALSE (Explain)

c. If $a < 0$ and $p < 0$, then the function will at least one root: TRUE or FALSE (Explain)

d. If $a \times q < 0$ then the function will have two roots: TRUE or FALSE (Explain)

11. 3 tried to convert a quadratic function from general form to vertex form by completing the square. Review each step and indicate if there are any errors in the process:

<p>a) student #1</p> <p>Step 1: $y = 3x^2 - 6x + 10$</p> <p>Step 2: $y = (3x^2 - 6x) + 10$</p> <p>Step 3: $y = 3x(x - 2) + 10$</p> <p>Step 4: $y = 3(x - 2)^2 + 10$</p>	<p>b) Student #2</p> <p>Step 1: $y = -2x^2 + 20x - 3$</p> <p>Step 2: $y = (-2x^2 + 20x) - 3$</p> <p>Step 3: $y = -2(x^2 + 10x) - 3$</p> <p>Step 4: $y = -2(x^2 + 10x + 25 - 25) - 3$</p> <p>Step 5: $y = -2(x + 5)^2 + 50 - 3$</p> <p>Step 6: $y = -2(x + 5)^2 + 47$</p>
<p>c) Student #3</p> <p>Step 1: $y = -\frac{1}{2}x^2 + 4x + 5$</p> <p>Step 2: $y = \left(-\frac{1}{2}x^2 + 4x\right) + 5$</p> <p>Step 3: $y = -\frac{1}{2}(x^2 - 2x) + 5$</p> <p>Step 4: $y = -\frac{1}{2}(x^2 - 2x + 1 - 1) + 5$</p> <p>Step 5: $y = -\frac{1}{2}(x - 1)^2 + 1 + 5$</p> <p>Step 6: $y = -\frac{1}{2}(x - 1)^2 + 6$</p>	<p>d) Student #4</p> <p>Step 1: $y = \frac{2}{3}x^2 + 8x + 10$</p> <p>Step 2: $y = \left(\frac{2}{3}x^2 + 8x\right) + 10$</p> <p>Step 3: $y = \frac{2}{3}(x^2 + 12x) + 10$</p> <p>Step 4: $y = \frac{2}{3}(x^2 + 12x + 36 - 36) + 10$</p> <p>Step 5: $y = \frac{2}{3}(x + 6)^2 + 24 + 10$</p> <p>Step 6: $y = \frac{2}{3}(x + 6)^2 + 34$</p>